

Multimodal Bundle Recommendation and Generation

MA Yunshan 26 Aug, 2025

A Short Bio:

- 2025.1-now: Assistant Professor, School of Computing and Information Systems, Singapore Management University
- 2022.4-2024.12: Postdoctoral Research Fellow in NExT++ Research Center & NCL, NUS
- 2017.8-2022.3: PhD Candidate, School of Computing, NUS, supervised by Prof. Chua Tat-Seng
- Research Interest: Multimodal Event Forecasting, Bundle Recommendation.
- Homepage: https://mysbupt.github.io/

Outline

- What is a bundle and why do we study bundles?
- Bundle recommendation
- Multimodal bundle construction
- Bundle generation
- Open challenges

What is a bundle

Example bundles in various applications

Some synonyms: next basket recommendation, item set recommendation

Why do we study bundles

Key characteristics of bundles

- A thematic group, not just a set of scattered items: bundle ≠ sum of items
- Construction with certain purposes, e.g., discount, ease of packing/shipping, suitable for situations/occasions, fulfill specific functions

Rationale of Bundling^[1]

- Economies of scale: sell more products
- Economies of scope: sell various products
- Lower marginal costs: package, shipment etc.
- Lower production set-up cost
- Lower customer acquisition cost
- Ease the purchase decision making process of customers

Common Bundling Strategies^[2]

- Pure bundles
- New product bundles
- Mix-and-match bundles
- Cross-sell bundles
- Gifting bundles
- Inventory clearance bundles
- Buy-one-get-one bundles
- ...

Personalized bundle recommendation (1/5)

New challenges: need to model both user-item and user-bundle interactions

Personalized bundle recommendation (2/5)

CrossCBR: cross-view contrastive learning

Bundle View	Item View		
U-B Graph	U-I Graph	B-I Graph	
$u_1 \bigcirc b_1$ $0 b_2$ $u_2 \bigcirc b_3$ $0 b_4$	u_1 0 i_1 0 i_2 0 i_3 0 i_4 0 i_5	b_1 0 i_1 b_2 0 i_2 0 i_3 0 0 0 0 0 0 0 0 0 0	

A Unified View (e.g, BundleNet)	Two Separate Views (e.g., BGCN)	Two Cooperative Views (Ours)	Model
$e_u \bigcirc e_b$	$oldsymbol{e}_u^Bigcup_{oldsymbol{-}}igcup_b^B$	$oldsymbol{e}_u^Bigotimes oldsymbol{e}_b^B$	Bundle View
e_i	$e_u^I \overset{\bigcirc}{e_i^I} \overset{\bigcirc}{e_b^I}$	$e_u^I \overset{\bigcirc}{e_i^I} \overset{\bigcirc}{e_b^I}$	Item View
$y = \boldsymbol{e}_u^{T} \boldsymbol{e}_b$	$y = \boldsymbol{e}_u^{B^{T}} \boldsymbol{e}$	Prediction	

Sources of user preferences:

- Bundle view (U-B graph)
- Item view (U-I graph & B-I graph)

Cooperative association between these two views has been loosely modeled or even overlooked in existing works

Motivation: Modeling the cooperative association between two views is vital to the success of bundle recommendation.

Personalized bundle recommendation (3/5)

MultiCBR: multi-view contrastive learning

MultiCBR: (1) Three Views; (2) Early Fusion and Late Contrast

Novelties:

- 1) Introduce the additional third view: B-I view;
- Adopt the "early fusion and late contrast" paradigm, which can model both cross-view and ego-view user preferences, with few extra computational expenses

$$\begin{aligned} \boldsymbol{y}_{u,\,b}^* &= (\mathbf{e}_u^{UB} + \mathbf{e}_u^{UI} + \mathbf{e}_u^{BI}) \cdot (\mathbf{e}_b^{UB} + \mathbf{e}_b^{UI} + \mathbf{e}_b^{BI}) \\ &= \underbrace{\left(\mathbf{e}_u^{UB} \cdot (\mathbf{e}_b^{UI} + \mathbf{e}_b^{BI}) + \mathbf{e}_u^{UI} \cdot (\mathbf{e}_b^{UB} + \mathbf{e}_b^{BI}) + \mathbf{e}_u^{BI} \cdot (\mathbf{e}_b^{UB} + \mathbf{e}_b^{UI})\right)}_{\text{cross-view preference}} \\ &+ \underbrace{\left(\mathbf{e}_u^{UB} \cdot \mathbf{e}_b^{UB} + \mathbf{e}_u^{UI} \cdot \mathbf{e}_b^{UI} + \mathbf{e}_u^{BI} \cdot \mathbf{e}_b^{BI}\right)}_{\text{ego-view preference}}, \end{aligned}$$

Personalized bundle recommendation (4/5)

Some further studies:

- EBRec: we identify that the item representation is insufficiently learned, and enhancing the item-level representation will significantly improve the bundle recommendation performance;
- BundleGT: we propose to use transformer as backbone to model the bundling strategy of bundles;

Enhancing Item-level Bundle Representation for Bundle Recommendation. Xiaoyu Du et al. TORS 2023. Strategy-aware Bundle Recommender System. Yinwei Wei et al. SIGIR 2023.

Reflections on bundle recommendation (5/5)

Two unsolved problems:

- 1. Only interaction data is insufficient
 - Cold-start, long-tail items have few interactions
 - Lack of rich content and semantic information of items
- 2. Only recommend existing bundle
 - What if there is no pre-constructed bundles?
 - Existing bundles cannot satisfy users' needs
 - New items come but have not been incorporated

Multimodal Bundle Construction

Single Modality

Multimodality

Recommendation

Construction

Multimodal Bundle Construction (1/7)

Multimodal Bundle Construction (2/7)

Key characteristics

Why are the items included in the same bundle? → the main data sources and key patterns

Multimodal Bundle Construction (3/7)

CIRP: cross-item relational pre-training for multimodal product bundling

Motivation:

Explicitly distill cross-item relations into VLMs.

- Cross-Item Relational Pre-training (CIRP)

Pre-training Stage:

- Image-text contrastive (ITC) loss retains multimodal understanding.
- Cross-item contrastive (CIC) loss captures cross-item relations.

Inference Stage:

 Generate relation-aware multimodal representations, even for cold-start items.

Multimodal Bundle Construction (4/7)

LARP: language audio relational pre-training for cold-start playlist continuation

- 1) Three *modalities* of data (introduce audio):
 - Audio new
 - Language
 - Relational
- Extend CIRP from two losses (ITC and CIC) to three stages of contrastive learning:
 - Within Track (WTC) ITC
 - Track to Track (TTC) CIC
 - Track to Playlist (TPC) new

Multimodal Bundle Construction (5/7)

CLHE: leveraging multimodal features and item-level user feedback for bundle construction

Key Novelty:

- 1) leverage comprehensive modalities: interactions, text, image, audio;
- 2) integrate multimodal representation learning into an **end-to-end** bundle construction model (previous work separate the two parts).

Multimodal Bundle Construction (6/7)

Bundle-MLLM: Fine-tuning Multimodal Large Language Models for Product Bundling

Key Novelty:

- 1) enhanced multimodal understanding capability by using MLLMs, compared with previous CLIP-based backbones;
- 2) extensive internal knowledge can be utilized for the product bundling task.

Reflections on bundle construction (7/7)

New problems:

- Only pick items from existing item candidate pool
 - What if there is no available proper item for bundling?
 - What if the items are not in-stock or from other platforms?

With the substantial progress in GenAI, can we directly generate bundles?

Yes! That is Bundle Generation

Bundle Generation (1/5)

Task formulation

- 1) Personalized Fill-in-the-Blank (PFITB)
- 2) Generative Outfit Recommendation (GOR)

Retrieval-based methods

Generation-based methods

Fashion Dataset

Bundle Generation (2/5)

DiFashion: Diffusion Models for Generative Outfit Recommendation

- 1) Use diffusion model to directly generate fashion item images
- Condition the generation with both user's historical interaction (personalization) and other items within the bundle (compatibility)

Bundle Generation (3/5)

FashionDPO: fine-tune fashion outfit generation model using direct preference optimization

Bundle Generation (3/5)

FashionDPO: fine-tune fashion outfit generation model using direct preference optimization

FashionDPO: Fine-tune Fashion Outfit Generation Model using Direct Preference Optimization. Mingzhe Yu et al. SIGIR 2025.

Bundle Generation (4/5)

Smart Fitting Room: a one-stop framework for matching-aware virtual try-on

Bundle Generation (5/5)

GenWardrobe: a fully generative system for travel fashion wardrobe construction

Open challenges (1/5)

Modality generalization:

It heavily depends on the progress of generative models of in certain modalities

- Mature image generation models enable image-centric bundle generation
- Music and video need more time to be readily used
- Gap between virtual design and real-world manufacturing

Open challenges (2/5)

Domain generalization:

Most of the works are constrained to the fashion domain

- Investigate more domains to enable generalizable bundling algorithm, such as
 - Finance portfolio
 - Travel package
 - Music playlist
 - Video playlist
 - and more

finance

travel

music

video

Open challenges (3/5)

Template-free entire bundle generation:

Current works need pre-specify the bundle size and category of each item (i.e., template)

- How to directly generate items without the input of any clue of the target item?
- How do bundle generation models determine when to stop?

Open challenges – beyond bundle (4/5)

Large item & bundle space exploration (compositional learning):

The item set is large (N), consequently, the bundle space is huge (C_N^x , x is the average bundle length), most of the bundle space has never been explored

- How to efficiently explore more bundling options?
- How to balance the exploitation and exploration?
- The challenges are not only in bundle
- How to evaluate the newly-generated yet unseen bundles (the next challenge)

# bundle (outfit)	# item	bundle space (3 items per bundle)	% bundles in dataset	# bundles/item
1,013,136	583,464	3.3*10 ¹⁶	3*10 ⁻⁷	1.74

Statistics of the POG fashion outfit dataset

Open challenges – beyond bundle (5/5)

Automatic evaluation of novel bundles (creative generation):

It is easy to generate numerous bundles, how to evaluate them

- We can train an evaluator to do automatic evaluation? how to guarantee the quality of the evaluator, which is also trained based on existing data
- Multi-agent (expert/aspect) evaluation
- Domain knowledge (aesthetics) injection
- Agentic simulation

The evaluation problem is also prevalent in other creative generation problems, while bundle exhibits more unique challenges: large composition space, multimodal, various constraints, etc.

Summary and take-aways

- What is a bundle and why do we study bundles -- background
- Bundle recommendation graph and contrastive learning
- Multimodal bundle construction multimodal integration
- Bundle generation generative models (image generation)
- Open challenges five open challenges

THANKS and Q&A